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1 Project Summary

Although ignored by most molecular biologists who commonly characterize gene ex-
pression levels, the reality is that the level of expression of the same gene can vary
enormously from one cell to another within a genetically-identical cell population. It
has been shown that these fluctuations are not simply a by-product of the regulatory
process and that they can contribute significantly to the control of cell function. For
example, some organisms utilize fluctuations to introduce diversity into a population,
as occurs during the lysis-lysogeny transition in A phage, while in others stability
against fluctuations is essential in gene regulatory cascades controlling processes such
as differentiation. This project developed improved theoretical and simulation tech-
niques that lead to reliable predictions of complex cell behaviors. Moreover, this
project developed quantitative models of gene regulation that correctly incorporate
stochastic fluctuations that are inherent in all gene networks and currently limit the
usefulness of existing modeling approaches. Computational models were tested and
refined through experimental studies using engineered gene circuits. Through this



integrated approach, a hierarchical simulation approach was developed and incorpo-
rated into BioSPICE in order to enhance the user’s ability to describe, predict and
control complex gene networks in living cells.

2 Significant Accomplishments
The significant accomplishments for the project are summarized below:

e GRASS v2.0, Gene Regulatory Anaylsis and Stochastic Simulation, was devel-
oped, successfully integrated and released as part of BioSPICE v2.0.

e SDEsolver, a general purpose biochemical reaction simulator, was developed,
successfully integrated and released as part of BioSPICE v2.0.

e BioNetS, a biochemical network simulator, was developed, successfully inte-
grated and released as part of BioSPICE v3.0. BioNetS handles discrete, con-
tinuous, and mixed models. It also provides a semi-implicit method for stiff
systems, and is optimized for speed and validated for accuracy.

e Models for sources of noise (transcription and translation) in gene expression
systems (single-gene systems and cascade networks of genes) were developed
and experimentally validated using engineered gene networks.

e Models of synthetic engineered promoters were developed and experimentally
validated using engineered gene circuits.

e A synthetic engineered promoter, which could be independently activated and
repressed by two different proteins, was constructed and used to validate the
developed models.

e Gene expression systems (single-gene systems and cascade networks of genes)
were constructed and used to validate models for sources of noise (transscription
and translation) in gene expression.

e A “noise generator” that can be used to produce gene regulatory signals with
variable signal-to-noise ratios was developed.

e Prototype programmable cells in which engineered regulatory modules were
integrated with the cell’s natural circuitry were developed.



3 Software for Stochastic Modeling of Biochemical
Networks

3.1 Background

Mathematical modeling of complex biological networks has a lengthy history. In the
past, the standard approach for modeling these systems has been to derive ordinary
differential equations (ODEs) based on the law of mass action for the concentra-
tions of the biochemical species involved in the network. Experimental studies have
demonstrated, however, that stochastic effects can be significant in cellular reactions,
particularly in the case of transcriptional regulation, where generally there are two
copies of each gene and the number of messenger RNA (mRNA) molecules can be
small. A number of recent experimental and modeling studies have addressed the role
of fluctuations in gene expression. Many modeling studies have employed the well-
established Gillespie Monte Carlo algorithm or one of its more recent variants. These
algorithms offer an exact solution to the stochastic evolution of chemical systems,
but they are computationally very expensive. A much more efficient approach is to
approximate the species as continuous variables and formulate the problem in terms
of stochastic differential equations (SDEs), often referred to as chemical Langevin
equations. This approximation works remarkably well for many cases, even when the
number of particles involved is as small as 10, and the resulting simulations can run
orders of magnitude more quickly than the discrete Monte Carlo approach. In other
cases, when some or all of the particle numbers are very small, the system may need to
be modeled using the discrete approach, or a hybrid method in which some species are
treated discretely while others are evolved using the continuum approximation. With
the increasing interest in formulating accurate models of large biochemical networks,
there is a need for reliable software packages that correctly incorporate stochastic
effects, yet are fast enough to simulate large interconnected sets of reacting species
(as found, for example, in signaling cascades or genetic regulatory networks). The
BIOchemical NETwork Stochastic Simulator, “BioNetS,” was developed to meet this
need. BioNetS is capable of performing full discrete simulations using an efficient
implementation of the Gillespie algorithm. It is also able to set up and solve the
chemical Langevin equations, which are a good approximation to the discrete dy-
namics in the limit of large abundances. Finally, BioNetS can handle hybrid models
in which chemical species that are present in low abundances are treated discretely,
whereas those present at high abundances are handled continuously. Thus, the user
can pick the simulation method that is best suited to their needs. All aspects of the
software are highly optimized for efficiency.

In the Implementation section, the mathematical background for the Gillespie
method, chemical Langevin equations and hybrid models is presented, along with a



discussion of the numerical algorithms used in BioNetS. Under Results and Discussion,
a brief introduction to BioNetS is provided along with several examples. The examples
serve two purposes: (1) to illustrate how to use the software, and (2) to verify its
efficiency and accuracy.

3.2 Implementation

The mathematical methodology on which BioNetS is built is developed first.

3.2.1 Discrete Reactions and the Gillespie Algorithm

BioNetS makes use of elementary reactions (zeroth, first and second order). The
following examples illustrates each type of reaction:

0 % A (1)
A \:é B 2)
A+B & A8 (3)
ka
v & yiy (4)
ke

In the above reactions, the calligraphic letters denote a single molecule of a chemical
species. The number of molecules of a particular species in the system at time ¢
is denoted with uppercase letters (e.g., A(t), B(t), A_B(t), and V (¢)). All the rate
constants, v, 6, and ki-kg, have units of per time. Eq. 1 represents a process in which
a molecule A is produced when the reaction proceeds in the forward direction and
is degraded in the reverse direction. In the forward direction, the reaction is zeroth
order and proceeds with an average rate of 7. In the backward direction, the reaction
is first order, and the average rate of degradation is 6 A(t). The forward reaction in
Eq. 2 represents a process in which chemical species A is converted to species B. In
this case, A and B might represent two different conformations of the same molecule.
In Eq. 2 both the forward and backward reactions are first order because the reaction
rates are proportional to the respective concentrations. The forward reaction given
in Eq. 3 is a second-order reaction in which an A molecule and a B molecule come
together to form the complex A_B. The average rate for the reaction is ky A(t)B(t).
The backward reaction is a first-order reaction in which A_B dissociates at an average
rate of k2 A_B(t). In Eq. 4 the forward reaction produces a molecule V. The difference
between this reaction and the forward reaction in Eq. 1 is that the average rate is
k3V (t). This leads to exponential growth of V'(¢). This reaction is particularly useful
if V(t) is interpreted as the cell volume. In the backward reaction, two V molecules



come together and degrade one of the ¥V molecules. The average rate for this reaction
is k4V (t)(V(t) — 1). The V(t) — 1 term arises because two of V' (¢) molecules must be
chosen to react. This type of term also arises in reactions that produce homodimers.
This reaction eventually stops the exponential growth of V. The net effect of these
two reactions is to produce logistic growth. The total average reaction rate for the
set of reactions given in Eqgs. 1-4 is

p(t) = v+6A() + kiA(t) + ko B(t) +
ks A(t)B(t) + kaA_B(t) + ksV () + ke V (t)(V (¢) — 1)

= Y (Fi+By) (5)

i=1

where F; and B; are the average forward and backward rates, respectively, for the ith
reaction.

For the rest of this section, it is assumed that the volume of the cell is not changing
and only Eqs. 1-3 are considered. In the examples, a case in which the volume is
changing is considered. If A(t), B(t) and A_B(t) are present in large numbers, then the
law of mass action can be applied to derive equations that govern the concentrations
[A] = A(t)/V, [B] = B(t)/V and [AB] = A_B(t)/V, where V is the cell volume.
These equations are

DAL 0418 + by + )(A] + K[ AB) + B+ ©)
ABL (WAL + kB + K4] + k4B (7)
d[jf] = k3[A][B] — k4[AB] ()

The primed rate constants indicate that they have been appropriately scaled by the
volume (i.e, k§ = k3V and o' = /V), and, therefore, have units of either per time
per concentration or concentration per time. Note that to convert to units of molar,
one also has to appropriately scale the rate constants by Avagadro’s number. Eqs. 6 -
8 represent a macroscopic description of the process, because they ignore fluctuations
in the concentration that arise from the stochastic nature of chemical reactions.

In general, A(t), B(t) and A_B(t) are random variables that take on any nonneg-
ative integer value. The Gillespie algorithm can be used to generate sample paths of
the process. This algorithm assumes that the random time AT}, between the ith and
1 + 1 reaction, is exponentially distributed. For the simple example given by Egs. 1
- 3, the mean waiting time between reactions, which characterizes the exponential
distribution, is uar, = v + 0A(t;) + k1 A(t:) + kaB(t;) + ksA(t;) B(t:) + ks A_B(t;),
where ¢; is the time at which the ith reaction occurred. Therefore, t;,; = t; + AT;.



Once the time at which the next reaction occurrs has been determined, the following
probabilities are used to determine which reaction occurred:

PO 4] = (9)
PrA (] = ZAT(;) (10)
PrlA B = %(;) (11)
PrB 2 4] = kiﬁ S) (12)
PrlA+B™2 AR = % (13)
PrlAB® A+ 8] = %ﬁf’;i) (14)

Once the reaction has been determined, the chemical species are updated accordingly.
As discussed in the Numerical Methods section, BioNetS uses an efficient implemen-
tation of the Gillespie algorithm.

Another description of discrete stochastic processes is achieved through use of the
master equation that governs how the probabilities of the various random variables
in the process evolve in time. Let p,pqp(t) = Pr[A(t) = a, B(t) = b, A_B(t) = a.b],
then pgpq5(t) satisfies the master equation

d a a
% = —[y+ (6 +ki)a+ kob+ ksab + ksab|papas + YPa—106 + 6(a@+ 1)Dat1pasb

+ki(a+ 1)Pat1p-1,06 + Kk2(b+ 1)Pa—16+1,06
+k3(a+1)(b+ 1)Pat1pr1,a-1 + ka(ad + 1)pa_1p-1,05+1 (15)

The master equation is the starting point for deriving various approximate schemes for
describing the system. In the next section, an approximate scheme that is valid in the
limit of large, but finite molecule numbers, is discussed. The simplest approximation
scheme is achieved by considering the first moments of the process. Over bars will be
used to denote averaging. For example, A(t) = > apabWPapas(t). Eq. 15 can be used
to derive equations that govern the time evolution of all the first moments. Because
of the second-order reaction in Eq. 3, the equations for the means are coupled to
the second moments. In fact, the nth moment equations contain terms that involve
the n + 1 moments. Thus, there is no closure to the system. The simplest closure
scheme is to assume that all moments factorize (e.g., A2 = 22). This represents
the macroscopic limit in which fluctuations are ignored. In this limit, Egs. 6-8 are
recovered from the master equation.



The Diffusion Limit and the Chemical Langevin Equations

The general form of the master equation for a system consisting of N chemical species
and M reactions is

dpn M M M
ﬂ = Z(E + Bz)pn + Z Fipnféi + Z Bipn+6i (16)
=1 i=1 i=1

where n is a N-dimensional vector of species numbers, F; and B; are the backward
and forward rates for the ith reaction, and the vectors §; contain the stoichiometric
constants for the i¢th reaction. For the simple model given by Egs. 1 - 3, N = 3,
M = 3, and p,(t) = Pr[A(t) = ny, B(t) = ne,andA_B(t) = ng]. The forward and
backward rates are Fy = 7, By = 0ny, F5 = kiny, By = kong, F3 = ksnins, and
Bs; = k4ns. and the §; vectors are the rows of the stoichiometric matrix

1 0 0
A= -1 1 0 (17)
-1 -1 1

The (7,j) element in the above matrix represents the change in the jth chemical
species when the ith reaction proceeds in the forward direction.

If the molecule numbers are large as compared to 1, then the master equation
Eq. 16 can be approximated by the continuous process

dpn,t) = 0 1o &
ot - ; 8—7’L]A] (1’1),0(1’1, t) + 5 — mD],k(n)p(na t) (18)
where
M
Ajm) = Y Aji(F - By) (19)
v
Dj,k(l’l) = Z Ai,in,k(-Fi + Bz) (20)

This result can be derived in several ways. One method is to note that Eq. 15
represents a second-order finite differencing of Eq. 18, with a grid size of 1. Another
method is to make use of the shift operator

0 Ny
o k) = expllegr) f) = 3 Sy o (21)
where f(n) is an arbitrary smooth function and for our purposes k is an integer. If
the shift operator is used in Eq. 15, the diffusion limit is achieved when the Taylor

series expansion given in Eq. 21 is truncated at j = 2.
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Sample paths consistent with Eq. 18 can be generated using the following set of
SDEs

dN; _

—= =

Aj(N) + ) A/ Fe(N) + Bi(N)wi(t) (22)

where the wy(t) are independent Gaussian white noise processes. These equations
are often referred to as the chemical Langevin equations. For Egs. 1 - 3, the explicit
form of the SDEs are

% = —(ky+ksB+8)A+kyB+kyA B+ + /A + yu(t)
k1A + kyBuws(t) — \/ksAB + ks A_Bws(t) (23)
% = —(ko + k3A)B + k1A + k4 A_B + \/k1 A + ks Bws(t)
—/k3sAB + k4A_Buwj(t) (24)
dfl—;B = —k4A_B+k3AB + \/ksAB + kyA_Bw,(t) (25)

BioNetS generates numerical solutions to the SDEs given by Eq. 22 using either an
explicit or semi-implicit Euler method. The form of these methods is

+VALY T Api/Fi(N(t) + Be(N(t)) Zi(t) (26)

where € = 0 for the explicit method and € = 1 for the semi-implicit method and the
Zy(t) are independent standard normal random variables. The advantage of using the
chemical Langevin equations is that in the appropriate parameter regime, numerical
solutions to the set of SDEs given by Eq. 22 can be generated much more efficiently
than using the Gillespie algorithm. This point is expanded upon in the Results
section. Higher-order numerical algorithms for SDEs are available, but the noise
structure of the chemical Langevin equations makes these schemes very cumbersome
to implement. In the Results section, the Euler methods given by Eq. 26 are verified
to be sufficient to produce reliable results. Note that the A matrix is generally sparse,
and BioNetS takes advantage of this sparseness to optimize the efficiency of the two
Euler methods (see Numerical Methods, below).

3.2.2 Hybrid Schemes

It is often desirable to allow some of the chemical species to be treated as continuous
random variables and some to be treated discretely. This is particularly true for the
case of transcriptional regulation by transcription factors. In this situation there can
be as few as one DNA /transcription factor binding site and mRNA abundances can be

8



as small as 10 or fewer. In contrast, protein abundances can be in the thousands. The
technical difficulty with implementing hybrid schemes that include both discrete and
continuous random variables is that the Gillespie method requires constant transition
rates between reactions. This may not be the case, if some of the chemical species are
evolving continuously in time. BioNetS overcomes this problem in one of two ways.

Let N4y < N be the number of discrete chemical species and My < M the number
of reactions that produce a change in one of the N; chemical species. The overall
reaction rate at time ¢; for the discrete set of chemical species is

py = [Fi(ty) + Bi(t;)] (27)

i=1

If the time step At for the SDEs is small enough such that
Pt = ,U,tjAt <e<<1 (28)

then p; is approximately the probability of a transition in A¢. In the above equation
€ is a user-specified tolerance. The probability of two discrete transitions in At
is proportional to (At)?2. Choosing ¢ < 0.1, which means the probability of two
reactions in At is less than 0.01, generally produces good results. However, this
should be verified on a case-by-case basis. At each time step, BioNetS checks to
verify that Ineq. 28 is satisfied for the specified €. If so, a uniform random number
R is generated and compared against p;. If R < p;, then a transition occurred and
the conditional probability R/p; is used to determine which of the discrete transitions
occurred. If p; > €, then the discrete reactions determine the fastest time scale in the
system. In this case the Gillespie algorithm is used to update the discrete reactions,
and the random time step At; is used to update the SDEs.

3.2.3 Numerical Methods

BioNetS generates code that is tailored to efficiently simulate biochemical reactions.

The optimization techniques used by BioNetS allows the software to simulate large

systems in reasonable times without requiring high-end computational hardware.
Techniques used to optimize the Gillespie method are:

e For the discrete variables, the program uses data structures that allow only the
chemical species and reaction rates that are affected by the current reaction to
be updated.

e A bisection search is used to determine which reaction occurred.

The code has both an explicit and a semi-implicit solver, for simulating the chem-
ical Langevin equations. The user specifies at runtime which method to use. By



default the semi-implicit solver will be used. The semi-implicit solver uses Newton’s
method to solve the implicit equations, and for that the program needs to compute
the Jacobian and solve a linear system at each iteration. For updating the chemical
Langevin equations and hybrid models optimization techniques include:

e The sparse nature of the stoichiometric matrix is used to efficiently store and
perform matrix operations.

e After every reaction, only the species and reaction rates affected by that reaction
are updated.

e The Jacobian is sparse, and the code takes full advantage of this fact. The
program solves and factorizes the Jacobian using sparse methods. Before the
code generation, BioNetS computes the entries in the Jacobian symbolically
and finds a permutation that decreases the number of fill-ins during the LU
factorization. As a result, no zero entries are saved, and the sparse structure is
fully exploited. The sparse structure is then used in the LU solve. In the code,
no pivots are visible, and no if-statements are left.

3.3 Results and Discussion

In this section, several examples which serve as illustrations of how to use BioNetS
and test the accuracy and efficiency of the numerical methods are presented. One
particular concern is the accuracy of the Euler methods. While these methods are
only of order v/At, it is shown that when the approximations that lead to the chemical
Langevin equations are valid, the difference between the numerical solutions of the
SDEs and the exact discrete Gillespie method are negligible. Currently, the graphical
user interface to BioNetS runs on the Macintosh OS X operating system, though the
software will generate portable C/C++ code that can be compiled and run in any
computing environment. The following examples illustrate the way in which models
are entered and run in BioNetS. More detailed documentation is available with the
software package.

3.3.1 Dimerization

To begin, consider a simple system that consists of the following two reactions:

D= M (29)
M+ M :é D (30)
D X g (31)
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In this system, monomer molecules M are produced at an average rate v and degraded
at an average rate 6,, M (t). Two monomers can then bind to form a dimer molecule
D. The average forward and backward rates for this reaction are ky M (¢)(M(t) — 1)
and kyD(t), respectively. The dimers are degraded at a rate ;. Two cases will be
treated. In the first case the cell volume is assumed to be constant, and in the second
case the cell is allowed to grow and divide. To model cell growth, the cell volume V,
is treated as a random variable V., = aV/, where V is a non-negative discrete random
variable and « represents a unit of volume. The random variable V is governed by
the reaction

VEY 4Ly (32)

The above reaction causes V to grow exponentially fast with an average rate of
ks. Note that logistic growth is produced when the backward reaction in Eq. 32 is
included.

3.3.2 Constant Volume

Start by considering the simple case in which the volume of the cell remains constant.
To use BioNetS follow these steps. Copy BioNetS onto your machine, and double click
to launch. Help is included as part of the program, and accessed from the Help menu.
The Help document will walk you through all the steps needed to enter reactions and
run the simulator.

The user interface asks you to enter the reaction and corresponding rate constants
in the top part of the script window. In the bottom part of the script window, you can
toggle between panels. The Species panel allows the user to specify how the simulator
treats each chemical species, discrete or continuous. The Constants panel lists the
order in which the rate constants are referenced. The Output panel allows the user
to specify the ouput type. There are two ways to generate program output, either
binary or ASCII. Binary output is based on MATLAB binary files, so it is possible to
drive the program with MATLAB and use MATLAB’s plotting routines to view the
output. It is also possible to generate time series and histograms of the data from
within BioNetS. Using ASCII files for I/O allows the simulator to be run through shell
scripts. The Executable panel allows the user to generate either an executable file
or source code. BioNetS generates portable C/C++ code that can be compiled and
run in any computing environment. BioNetS can directly compile the C/C++ code.
However, this requires the Developer tools, included on all recent Apple machines
and available directly from http://developer.apple.com for free. The compiled code
can then be run from within BioNetS. The Comments panel is available for the user
to enter descriptive comments about the model.

To run BioNetS as a BioSpice agent, you need to move the source directory onto
a OAA-supported system. Once there, open up the MakeOAA file and specify the

11



locations of your oaalib folder. Then just type “make -f MakeOAA” (without the
quotes) to create the agent.

Simluations indicated that the agreement between the two different methods is
very good. These findings indicate that the chemical Langevin equations are accu-
rately capturing the dynamics and steady-state behavior of the discrete system.

3.3.3 Cell Growth and Division

In this section, it is described how cell growth and division can be modeled using
BioNetS. It is assumed that the cell is experiencing exponential growth up until the
time it divides. As discussed above, the cell volume V/ is treated as a random variable.
In this model cell division occurs when V, exceeds a threshold value V4. When cell
division occurs the volume is halved, and the proteins are randomly divided between
the two cells using a binomial distribution. Only one of the daughter cells is tracked.
Because second-order reactions require two molecules to collide, the rate constants for
these reactions should scale like k; = ki /V,.. It is also assumed that the production
rate of monomers scales as y = 4'V,. This is a reasonable assumption, because as the
cell grows the transcription and translation machinery increases. These assumptions
produce the following rate equations for the concentrations

% = —2K}[M]? + 2ks[D] + 7' — (6 + ks3)[M] (33)
% — K\[MJ — ks[D] — (ks + 64)[D] (34)
dv,

TG )

The terms in Eqgs. 33 and 34 that involve k3 arise because of dilution due to cell
growth. The same parameter values as in the constant volume case are used except
0m = 1 and 64 = 0. The cell growth rate k3 = 0.02 and the scale factor for the
volume, «, is equal to 1. With these choices of parameter values, we expect the
average behavior of this system to be similar to that of the constant volume case.
Simulations for this simple example indicated that the main effect of volume growth
is to act as an additional noise source and increase the variability of the distributions.

3.3.4 A Chemical Oscillator

BioNetS is next used to simulate a two-gene system that has been studied in the
literature. In this system, the protein A coded for by gene a acts as an activator for
gene a and gene r, by binding to the promoter regions, P, and P,, of the respective
gene. This increases the rate of mRN A, and mRN A, production by a factor a, and
o, respectively. The protein R acts as a repressor for both genes by binding to A to

12



form the inactive complex A R. All gene products, mRNA and protein, are actively
degraded. However, the heterodimer A R protects the R subunit from degradation.
The system consists of 9 chemical species and the following 14 biochemical reactions:

P. B P+ mRNA, (36)
P.A B P A+ mRNA, (37)
P, B P 4mRNA, (38)
P, A 2 DA+ mRNA, (39)
mRNA, 2 mRNA,+ A (40)
mRNA, ™ mRNA +R (41)
A+R \:é AR (42)
Po+ A \’;é PoA (43)
P+ A l\fé P,_A (44)
A Mg (45)

R 2 g (46)
mRNA, 2 ¢ (47)
mRNA, M ¢ (48)
AR " R (49)

An interesting feature of the system is that it is capable of producing sustained
oscillations.

The chemical species P,, P,, P,_A, and P,_A are binary random variables: they
can only take on the values 0 or 1. Therefore, these species cannot be approximated
as continuous random variables. All the other chemical species appear in sufficient
quantities to justify the continuum approximation. The hybrid model was run using
the semi-implicit Euler method, and for these parameter values, runs three times
faster than full model. Visually, the agreement between the two methods appears
good. To test the accuracy of the Euler method, BioNetS was used to construct 2-D
histograms of R versus mRN A,.

Simulations showed excellent agreement between the discrete and hybrid models.
This indicates that the hybrid model is accurately sampling the steady-state distribu-
tion. To verify that the hybrid model faithfully captures the dynamics of the system,
the power spectra of both models were computed. Again, excellent agreement was
found between the discrete and hybrid models.

13



3.3.5 An Engineered Promoter System

Genetic regulatory networks consist of sets of genes whose levels of expression in a
cell are interdependent. This dependence arises through the action of transcription
factors, proteins which bind to operator sites on the DNA strand and influence the
rate at which a gene product is generated. Once bound, these regulatory proteins
affect the binding affinity of RNA polymerase, an enzyme that binds to promoter se-
quences in the DNA and initiates transcription of messenger RNA (mRNA) strands,
which are subsequently translated into proteins. These proteins may themselves act
as transcription factors, influencing their own rates of expression or those of other
gene products and thus forming networks of connected genes. Using standard tech-
niques in modern molecular biology, it is possible to design novel systems of promoter-
gene pairs, such that virtually any desired regulatory network architecture may be
instantiated; such networks are often called “synthetic gene networks.” Recent im-
plementations have included direct negative and positive feedback, a bistable switch,
an oscillator, an intercellular communication system, and a bimodal self-activating
system.

In this example, BioNetS is used to implement a model of a simple, open-loop
network based around a novel engineered promoter, which was designed and con-
structed by the project team. The promoter, called OgOjq., combines the Oy, Orl,
and Og2 operator sites, so that it is repressed by the lac repressor protein (LacI)
and activated by the lambda repressor protein (CI). Experiments were conducted in
which the promoter, along with other sites to produce the activator and repressor
proteins, is integrated into a high copy number plasmid and inserted into a strain
of Escherichia coli. The promoter’s activity is observed using a fluorescent reporter,
Green Fluorescent Protein (GFP). The goal here is to provide a reasonably complex
test case to evaluate the performance of BioNetS.

The processes to be captured by the model are: transcription and degradation
of mRNA strands; translation of mRNA into protein; degradation of protein; forma-
tion of protein multimers (dimers in the case of CI, tetramers in the case of Lacl);
LacI binding to isopropyl-3-D-thiogalactopyranoside (IPTG), a chemical inducer that
reduces LacI’s binding affinity for O,.; and protein-DNA binding at the OO, pro-
moter’s operator sites. We define the following chemical species: G, GFP; M,, mRNA
coding for GFP; X, CI monomer; X5, CI dimer; M,, mRNA coding for CI; D,, the
arabinose-inducible pBAD promoter site producing CI; Y, Lacl monomer; Y5, Lacl
dimer; Y}, Lacl tetramer; Iy, IPTG (present in massive excess and thus taken to be
constant); Y7, Lacl tetramer bound to IPTG; M,, mRNA coding for Lacl; and D, the
PrtetO1 site constitutively producing Lacl. In addition to these, species Dy through
Dy are defined, representing the various permutations of proteins bound to the three
operator sites in the OrOy,. promoter. There are twelve combinatorial possibilities,
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but three of them are eliminated on the basis that CI (X5;) binding Og2 but not Ogl
is unlikely, because of the low binding affinitity of CI for Og2 compared to Ogl. This
reflects the regulatory effect of the proteins; for example, CI bound to Og2 leads to
a 10-fold increase in transcription rate, while Lacl bound to Oy, halts transcription
completely (note that we assume in the event of simultaneous binding of activator
and repressor, repression “wins” and transcription is halted).

The following irreversible reactions represent the processes of transcription, trans-
lation, and degradation:

Do % Do+ M, (50)
D, A DM, (51)
Dy B Dy+ M, (52)
D, X% D,+M, (53)
D, % DM, (54)
M, B M,+g¢ (55)
M, B M+Y (56)
M, B M+2x (57)
M, T (58)
M, T (59)
M, T (60)
G ™ (61)
y =g (62)
x g (63)

As in previous reactions, the caligraphic letters represent individual molecules of each
species. All times and rates are scaled by the cell division time.

Experimental measurements generally provide equilibrium rather than rate con-
stants, and thus when writing reversible reactions we use the following notational
convention: a reaction with equilibrium constant K has forward rate constant KR
and backward rate constant R, where R is a scaling factor which sets the speed at
which the reaction approaches equilibrium (three values of R — 1, 10, and 100 —
are considered). Using this notation, protein-protein binding is represented with the
following set of reactions
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K,

V+Y = I (64)
1&2

Yo+ Vo &= Wy (65)
KAI

W+l = Vi (66)

X+x = A (67)

Finally, protein-DNA binding is given by:

Do+ Xy = D (68)
Di+X & D, (69)
Dy + Vs o D; (70)
D+ & D, (71)
Dyt Ay 2 D, (72)
DotV 2 Dy (73)
Dit Xy 2 Dy (74)
Do+ = Dy (75)
Di+Y & Dy (76)
D+ X & Dy (77)
Dy+ Y = Dy (78)
Dt Xy 2 Dy (79)

In all, the system consists of 21 species, participating in 34 reactions. The reactions
are entered into BioNetS using the same method described in the previous examples.
BioNetS’ ability to represent individual species as either discrete or continuous is used
to formulate three versions of the model: fully discrete, fully continuous, and a hybrid
version in which the DNA species Dy through Dg are discrete while all other species
are continuous. The value of R, the scaling factor for reversible reactions is varied,
and all other parameters are kept fixed at the following nondimensionalized values:
By =0.1, By =1, B, = 0.5, Br = 10, Ymrna = 3.5, Ypret = 0.7, K, = 0.01, Kyp = 0.1,
K,y =2x107% K, =0.05, K; = 0.3, Ky = 2K, K3 = 0.008, Ky = 1.4 x 107K,
Ip =1 x 108.

To evaluate the steady-state probability distributions produced by the reaction
system, simulations 250000 cell cycles in length were used to accumulate histograms
(a built-in feature of BioNetS) of the number of molecules of GFP (species G), for
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each of the three versions of the model. The resulting distributions were essentially
identical, indicating that the continuum approximations used in the fully continuous
and hybrid forms of the model were valid. Not all species in the system are well
approximated as continuous variables The fully continuous model fluctuates into neg-
ative values, indicating that the continuum approximation has broken down. This
does not significantly affect the distribution for GFP because the other, more com-
mon DNA states dominate the system’s behavior; note, however, that if genomic DNA
were considered rather than a high copy number plasmid, one would not be able to
employ a fully continuous model. The hybrid model, by treating the DNA species as
continuous, eliminates the fluctuations into negative values. In general, the appro-
priate approximations will depend on both the system and the variables of interest:
in the present example, if one were interested in the behavior of the operator sites
themselves, one would not be able to use the fully continuous version of the model,
but as a model solely of GFP expression the approximation suffices. Comparisons
between types of models should be made to test the underlying assumptions, and
BioNetS facilitates this process.

Simulations 200 cell cycles in length were used to test the speed at which the three
model versions ran. In each case, 200 simulations were run using a consistent set of
200 different random seeds; all runs were started with identical initial conditions. For
the fully continuous and hybrid systems, the semi-implicit scheme was numerically
stable and yielded consistent histograms for all time step sizes between dt = 0.001
and dt = 0.5, but the latter corresponds to just two time points per cell division
cycle (recall that all times are scaled by the cell division time), and it was chosen
instead to sample 20 points per cycle and set dt = 0.05. Simulations showed that
the fully continuous method was always fastest, with the degree of improvement over
the exact, fully discrete method depending strongly on the value of R, the scaling
factor for the reversible reaction rates. For R = 1, the fully continuous method
was only 1.4-fold faster than the fully discrete method, but as R is increased this
speed advantage increases to over 4-fold at R = 10, then to over 30-fold at R = 100.
(Note that the speed advantage of the fully continuous over the fully discrete method
increases with the abundances of the chemical species. Shifting parameters to generate
higher protein numbers can yield cases in which the continuum approximation is
hundreds of times faster than the discrete approach; runs not shown here.) Use
of a hybrid discrete/continuous method did not, for this particular model system,
offer any speed gain over the fully discrete approach; the increased time involved in
computing the Jacobian for the semi-implicit method is more time-consuming than
simply simulating the reactions directly. Optimizing efficiency requires testing various
potential approaches, and BioNetS makes this a simple process.
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3.4 Conclusions

BioNetS was developed to be a reliable tool for studying the stochastic dynamics of
large chemical networks. The software allows the user to specify which of the chemi-
cal species in the network should be treated as discrete random variables and which
can be approximated as continuous random variables. The software is highly opti-
mized for speed and should be be able to simulate networks consisting of hundreds of
chemical species. The accuracy of the numerical methods was verified by considering
several test systems (a dimerization reaction, a chemical oscillator, and an engineered
promoter), each of which shows excellent agreement between the fully discrete ver-
sion and the fully or partially continuous versions. BioNetS, by providing a simple,
user-friendly interface, will allow biological experimentalists to formulate biochemical
reaction models of their systems quickly and easily, ideally increasing the number of
systems in which direct comparisons are available between models and experimental
results. Clearly, not every possible biological system can be captured in the current
version of BioNetS, and its capabilities will continue to grow in the future.

3.5 Requirements
e Project name: BIOchemical NETwork Stochastic Simulator (BioNetS)
e Operating system:

— User interface: Macintosh OS X, version 10.2 or above.

— Generated source code: Ability to compile portable C++ code. Makefiles
included for OS X and Linux.

e Programming language: C++.

e Other requirements: None.
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